Robust Face Recognition using AAM and Gabor Features
نویسندگان
چکیده
In this paper, we propose a face recognition algorithm using AAM and Gabor features. Gabor feature vectors which are well known to be robust with respect to small variations of shape, scaling, rotation, distortion, illumination and poses in images are popularly employed for feature vectors for many object detection and recognition algorithms. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization method employed in EBGM is based on Gabor jet similarity and is sensitive to initial values. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we devise a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based facial feature localization method with initial points set by the rough facial feature points obtained from AAM, and propose a face recognition algorithm using the devised localization method for facial feature localization and Gabor feature vectors. It is observed through experiments that such a cascaded localization method based on both AAM and Gabor jet similarity is more robust than the localization method based on only Gabor jet similarity. Also, it is shown that the proposed face recognition algorithm using this devised localization method and Gabor feature vectors performs better than the conventional face recognition algorithm using Gabor jet similarity-based localization method and Gabor feature vectors like EBGM. Keywords— Face Recognition, AAM, Gabor features, EBGM.
منابع مشابه
Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks
Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...
متن کاملتشخیص چهره با استفاده از PCA و فیلتر گابور
Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...
متن کاملObject Recognition Based on Optimized Gabor Features and SVM
This paper proposes an optimized Gabor features and SVM based framework for object recognition. When discriminative features are extracted at optimized locations using tuned Gabor wavelets, classifications are done via SVM. Compared to conventional Gabor feature based object recognition system, the system developed in this paper is both robust and efficient. The proposed framework has been succ...
متن کاملA Fast and Robust Gabor Feature Based Method for Face Recognition
This paper describes a fast and robust Gabor feature based approach for face recognition. The most discriminative Gabor features are selected by the AdaBoost procedure, which are then subjected to the Generalized Discriminant Analysis (GDA) process for further class separability enhancement. Compared with the huge number of features used by typical classification algorithms using Gabor fiters, ...
متن کاملFace Image Analysis using AAM, Gabor, LBP and WD features for Gender, Age, Expression and Ethnicity Classification
The growth in electronic transactions and human machine interactions rely on the information such as gender, age, expression and ethnicity provided by the face image. In order to obtain these information, feature extraction plays a major role. In this paper, retrieval of age, gender, expression and race information from an individual face image is analysed using different feature extraction met...
متن کامل